REACTIONS OF OXYGEN TETRAFLUOROBORATE C. T. Goetschel, V. A. Campanile, C. D. Wagner, and J. N. Wilson Shell Development Company, Emeryville, California #### Introduction Recently we developed an efficient method of preparing F_2O_2 . This compound is known to react with boron trifluoride¹) to produce O_2 +BF₄. Little is known of the reaction of O_2 +BF₄ itself. It is relatively stable at room temperature, but reacts readily with organic compounds. For instance, tiny particles dropped into benzene or isopropyl alcohol instantly ignite fires. The only known inorganic reaction¹) is with NO₂ where oxygen is displaced giving NO_2 +BF₄. This paper describes some additional reactions of O_2 +BF₄ with inorganic as well as some organic compounds. ### Results and Discussion #### A. Inorganic Reactants # Xenon Since xenon has nearly the same ionization potential as O_2 , and since Xe⁺ should be smaller than O_2^+ , we felt that possibly xenon would replace oxygen to give the novel Xe⁺BF₄⁻. When liquid xenon (165°K) and solid O_2^+ BF₄⁻ (Xe/ O_2^+ BF₄⁻ = 15) were mixed in an evacuated tube, oxygen was released. The reaction was accomplished by allowing the xenon alternately to vaporize and condense around the O_2^+ BF₄⁻. After several minutes the sample was cooled in liquid nitrogen and any non-condensable gases were expanded into a fixed volume. The mass spectrum of the expanded gases showed only oxygen. The oxygen was pumped off; the reaction tube was warmed enough to liquefy the xenon and the procedure was repeated. This was continued until no further oxygen was obtained (about 85% of theory). Then the xenon was vaporized at 173°K (any BF₃ would also vaporize at this temperature) and expanded into a fixed volume. The loss of xenon (the amount reacted) was the same as the amount of oxygen collected. The mass spectrum indicated essentially no BF₃ was in the expanded xenon. After removing all the xenon, the remaining white solid was slowly warmed. Decomposition became appreciable at 255°K with complete decomposition at room temperature. The mass spectrum of the gases showed Xe, BF3, and F2 with a Xe;BF3 ratio of 1; we believe this to be evidence for the existence of Xe $^+$ BF4 $^-$. Some O_2 was observed as well. The oxygen could have come from the decomposition of some unreacted O_2 $^+$ BF4 $^-$, or possibly from a xenon-oxygen compound of low stability. It is a firm conclusion that xenon reacts with O_2 $^+$ BF4 $^-$ at temperatures as low as 165°K to give free oxygen and a xenon compound. #### 2. Chlorine Dioxide Chlorine dioxide was prepared by dropping sulfuric acid onto a mixture of $KClO_3$ and glass chips. The ClO_2 generated was then diluted in a stream of CO_2 and passed first through a drying tube (P_2O_3) , then through a sample of O_2 bF₄ which was supported on a glass frit and cooled to 195°K. An immediate reaction occurred, releasing oxygen. Within minutes the reaction was completed. The product, a light-yellow solid, was unstable at room temperature. The mass spectrum of its decomposition products showed only m/q peaks for fragment ions from ClO_2 , BF₃ and F₂. The product ClO_2 bF₄ has previously been reported² from the reaction of chloryl fluoride with boron trifluoride. # 3. Chlorine, Chlorine Trifluoride, and Ammonia In hopes of preparing the novel $\text{Cl}_2^+\text{BF}_4^-$, $\text{ClF}_3^+\text{BF}_4^-$, and $\text{NH}_3^+\text{BF}_4^-$, we passed the corresponding gases through $\text{O}_2^+\text{BF}_4^-$. In each case oxygen was displaced. However, the products were not stable at the reaction temperature (223°K to 195°K). # 4. Cyanogen At 248 K, 0_2 +BF4 dissolved in liquid cyanogen to give a clear, colorless solution. However, no oxygen was displaced and 0_2 +BF4 was recovered after removal of the cyanogen. ## B. Organic Reactants Although benzene and isopropyl alcohol spontaneously inflame when a milligram of ${\rm O_2}^+{\rm BF_4}^-$ is added, we felt that reactions with other specific organic compounds (in particular perhalogenated materials) could be studied under carefully controlled conditions. Indeed, when liquid CCl₄ was condensed around O_2 *BF₄ at 250°K, a smooth reaction occured to liberate O_2 , Cl_2 , and BF₃, forming CFCl₃ and CF₂Cl₂. In a like manner, O_2 *BF₄ reacted with CF₂Cl₂ at 233°K to form CF₃Cl, essentially quantitatively. No CF₄ was detected. Hexafluorobenzene also reacted with O_2 *BF₄ at 298°K to give O_2 , F_2 , BF₃, and fluorinated hydrocarbons with the following prominent ions in the mass spectrum: CF₃ *, C_2 F₄ *, C_2 F₅ *, and C_3 F₅ *. Some oxygen was converted to CO_2 and COF₂. It was also found that methane and ethane will inflame at 195°K. However, there was no reaction between perfluorocyclobutane and O_2 *BF₄ *. Of the compounds that were found to react readily with O_2 +BF₄, both methane and ClF₃ have higher ionization potentials than that of O_2 (12.2 ev). Cyanogen, with both unsaturation and a higher ionization potential, did not react. In the case of compounds with ionization potentials below or equal to that of O_2 , a reasonable mechanism for reaction is electron transfer to liberate O_2 and form a new ion which may or may not react further. It should be noted that no CF_4 was formed from the reaction of O_2 $^+BF_4$ with CCl_2F_2 , whereas CCl_2F_2 was a product from the reaction with CCl_4 . This would be expected if the primary products from the unstable CCl_2F_2 $^+BF_4$ and CCl_4 $^+BF_4$ were CCl_F_3 and CCl_3F , respectively. The former product has a higher ionization potential $(12.9 \text{ ev})^3)^4$) than O_2 and is less likely to react with O_2 $^+BF_4$. Therefore no CF_4 was observed. On the other hand, CCl_3F has a favorable ionization potential, and further reaction with O_2 $^+BF_4$ is possible, giving CCl_2F_2 . # Acknowledgement This work was supported by the Advanced Research Projects Agency under the research contract No. DA31-124-ARO(D)-54, monitored by the U.S. Army Research Office, Durham, North Carolina. #### References - I. J. Soloman, R. I. Brabets, R. K. Uenish, J. N. Keith, and J. M. McDonough, J. Inorg. Chem. 3, 457 (1964). - 2. A. A. Woolf, J. Chem. Soc., 4113 (1954). - J. W. Warren and J. D. Craggs, Mass-Spectrometry, Institute of Petroleum, London (1952), p. 36. - R. Bralsford, P. V. Harris, and W. C. Price, Proc. Roy. Soc. [A] <u>258</u>, 459 (1960).